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ABSTRACT

co To establish a realistic lower limit for the noise level of advanced

g supersonic transport aircraft will require knowledge concerning the

! amount of noise generated by the airframe itself as it moves through

the air. The airframe noise level of an F-106B aircraft was deter-

mined and was compared to that predicted from an existing empirical

relationship. The data were obtained from flyover and static tests con-

ducted to determine the background noise level of the F-106B aircraft.

Preliminary results indicate that the spectrum associated with airframe

noise was broadband and peaked at a frequency of about 570 hertz. An

existing empirical method successfully predicted the frequency where

the spectrum peaked. However, the predicted OASPL value of 105 dB

was considerably greater than the measured value of 83 dB.
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SUMMARY

To establish a realistic lower limit for the noise level of advanced

supersonic transport aircraft will require knowledge concerning the

amount of noise generated by the airframe itself as it moves through

the air. The airframe noise level of an- F-106B aircraft was deter-

mined and was compared to that predicted from an existing empirical

relationship. The data were obtained from flyover and static tests

conducted to determine the background noise level of the F-106B air-

craft, which is a delta wing aircraft designed for supersonic speeds.

The flyover tests were conducted at an altitude of 91 meters (300 ft) at

a Mach number of 0. 4. The main engine was at idle power and the

landing gear was retracted.

Preliminary results indicate that the spectrum associated with

airframe noise was broadband and peaked at a frequency of about

570 hertz. An existing empirical method successfully predicted the

frequency where the spectrum peaked. However, the predicted OASPL

value of 105 dB was considerably greater than the measured value of

83 dB.

INTRODUCTION

A major effort has gone into the development of jet exhaust sup-

pressors and acoustically treated nacelles directed at quieting the
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engine noise of advanced supersonic transport aircraft. This has led

to predictions that aircraft noise levels considerably below current

FAR-36 requirements can be achieved (ref. 1). However, it has re-

cently been suggested (ref. 2) that a noise floor exists below which

quieting the engines will be ineffective.

A principle source of this noise floor is the airframe itself as it

moves through the air. Some studies of this noise source have been

done using aircraft designed for subsonic speeds (refs. 2 and 3). How -

ever, since aircraft designed for supersonic speeds have a significantly

different shape, airframe noise could be considerably different. Thus,

an important question concerns the airframe noise of aircraft designed

for supersonic speeds.

To gain some insight into this question, the airframe noise level

of an F-106B aircraft was determined and was compared to that pre-

dicted from the existing empirical relationships of reference 2. The

data were obtained from flyover and static tests conducted to determine

the background noise level of the F-106D aircraft. These tests were

part of an investigation of the effect of flight velocity on the jet noise

and thrust associated with unsuppressed and suppressor type exhaust

nozzles (refs. 4 to 11).

The F -106B is a delta wing aircraft designed for a maximum speed

t;f Mach 2 in level flight. The flyovers were conducted at an altitude of

91 meters (300 ft) and a Mach number of 0. 4. The landing gear was re-

tracted for these tests. Acoustic measurements were taken from a

ground station directly beneath the flight path. For the static tests,

the acoustic measurements were taken at a radial distance of 30. 48

meters (100 ft) from the nozzle. The main engine of the aircraft, a

J75, was at idle power for both the flyover and the static tests.
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SYMB OLS

b wing span, m (ft)

C average wing chord, m (ft)

cL coefficient of lift

h aircraft altitude, m (ft)

OASPL overall sound pressure level, dB(re 2x10 5 N/m 2 )

PNL perceived noise level, PNdB

Rp direct ray distance between exhaust nozzle and micro-

phone, m (ft)

t wing thickness/2, cm (in.)

tm mean wing thickness, m (ft)

V aircraft velocity, meters/sec (ft/sec)

W aircraft gross weight, kg (lbm)

x distance on strut measured aft of strut fairing leading edge,

cm (in.)

x distance on nacelle measured aft of inlet lip, cm (in.)

xw distance along wing chord line measured aft from point of

intersection of inlet lip plane and wing chord, cm (in.)

y distance from aircraft centerline to nacelle centerline, m (in.)

6 elevon deflection, deg

0 angle between direct ray and jet exit centerline, deg
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APPARATUS AND PROCEDURE

Aircraft

The tests were conducted with an F-106B aircraft modified to

carry two underwing nacelles. Figure 1 shows the aircraft in flight.

Table I gives dimensional data of the aircraft and figure 2 shows a

schematic drawing of the aircraft details and installation of the na-

celles. The aircraft was 20. 076 meters (790. 4 in. ) long and had a 600

sweptback delta planform with a 5. 812-meter (228.8-in) semispan.

The wing had an approximately 4 percent thick NACA 0004-65 airfoil

section with a cambered leading edge, a mean aerodynamic chord of

7, 24 meters (285 in.), and an aspect ratio of 2. 2. The nacelles were

mounted to the wing aft lower surface by two attachment links (which

were enclosed by strut fairings) on each side of the fuselage at a span-

wise distance (y) of 1. 863 meters (73. 34 in.) or about 32 percent semi-

span. The nacelles were inclined 4. 50 down with respect to the wing

chord line so that the aft portion of the nacelle would be tangent to the

lower surface of the wing at its trailing edge (fig. 2(b)). The nacelles

extended below the fuselage lower surface which is fairly flat in the

region of the nacelles. Because of transonic area rule considerations,

the fuselage sidewalls on the bottom have a slight contour in the vicin-

ity of the nacelles (fig. 2(a)).

A schematic drawing of the nacelle strut fairing and elevon is

shown in figure 3. The strut fairing tapered to a maximum width of

57 percent of the nacelle diameter near the elevon hinge line. A gap

of 0. 64 centimeter (0. 25 in.) was maintained between the lower wing

surface and the fairing. The struts were mounted directly to the na-

celles. A 62. 23-centimeter (24. 5-in. ) wide section of each elevon

immediately above the nacelles was cut out and rigidly fixed to the

wing to provide clearance between the movable elevon and nacelle

(fig. 3(b)).
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A schematic drawing of the nacelle is presented in figure 4. Each

nacelle, which has a cylindrical diameter of 63. 5 centimeters (25 in. )

and is 452. 55 centimeters (178. 17 in.) long, contains a calibrated

J85-GE -13 afterburning turbojet engine. The flat-bottomed bulge on

the nacelle shown in sections A-A and B-B was needed to accommodate

the J85 engine accessory package.

Noise Measurements

Microphones for both flyover and static tests were 2. 54 centi-

meters (1 in.) diameter ceramic type. Their frequency response

were flat to within ±2 dB for grazing incidence over the frequency

range used (50 to 10 KHz). The output of the microphones was re-

corded on a two-channel direct record tape recorder. The entire sys-

tem was calibrated for sound level in the field before and after each

test with a conventional tone calibrator. The tape recorder was cali-

brated for linearity with a "pink" noise (constant energy per octave)

generator.

Both the flyover and the static signals were recorded on magnetic

tape. The tape was played back through one-third-octave-band filters

and then reduced to digital form. The averaging time for data reduc-

tion was 0. 1 second for the flyover signal and 0. 125 second for the

static signal.

Meteorological conditions, in terms of dry-bulb and dew point

temperatures, wind speed and direction, and barometric pressure

were recorded periodically throughout the tests. Wind speeds were

less than 5. 144 meters per second (10 knots) during all tests

Noise measurements for the flyover tests were made from a

ground station under the flight path (fig. 5(a)). The microphone,

which was fitted with a wind screen that caused no loss of signal, was

positioned 1. 22 meters (4 ft) above a concrete surface. It was oriented

to receive the acoustic pressure wave at grazing incidence
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The geometry of the flyover is shown in figure 5(b). As the air-
craft travels along its flight path, the direct ray distance from the
nozzle to the microphone, Rp, continuously changes. The angle be-
tween the direct ray and the jet exit centerline, referred to as the
acoustic angle 0, also changes. The values of R and 0 shown
in figure 5(b) assumes the aircraft flys directly over the microphone
at an altitude of exactly 91 meters (300 ft), But since this may not
always be the case, provisions were made to adjust the recorded sound
pressure level to these conditions. This was accomplished with the aid
of a signal recorded on the tape. At the same time a photograph was
taken from a ground based camera of the aircraft as it was passing
overhead. Details are given in reference 11.

The flyovers were conducted at a Mach number of 0. 4. The main
engine of thq aircraft (a J75) was at idle power while the data were be-
ing recorded; both J85 engines were shut off and allowed to windmill.

The location of the microphone for static tests is shown in figure 6.
It was positioned 1. 22 meters (4 ft) above a concrete surface and was
oriented to receive the acoustic pressure wave at normal incidence
(fig, 6(a)). It was fitted with a windscreen that caused no loss of sig-
nal, The acoustic measurements were taken at a radial distance of
30. 48 meters (100 ft) from the nozzle exit in increments of 100 over a
900 sector (fig. 6(b)). During the measurements, the main engine was
at idle power and both J85 engines were shut off.

RESULTS AND DISCUSSION

Airframe Noise

The F-106B aircraft was flown over the noise measuring station
at an altitude of 91 meters (300 ft) with its main engine (J75) at idle
power and both J85 engines shut off and windmilling, Sources of noise
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were the compressors and turbines of all engines, the turbulent mix-
ing of the exhaust jets with the surrounding air, and the airframe.
Since noise sources other than the airframe.,are readily.-identifiable,
airframe noise is defined as what remains after accounting for these
other noise sources.

The noise sources are identified from either flyover or static
spectra that have been adjusted to free-field conditions on a standard
day. The static spectra were further adjusted from the 30. 48-meter
(100-ft) radius at which the data were taken to the 91-meter (300 ft)
sideline conditions of the flyover. Details of the adjustments are
given in reference 6. In examining the flyover spectra, the greatest
emphasis should be placed on the data at frequencies between 160 and
5000 hertz. At frequencies below 160 hertz, the short integration time,
the narrowness of the frequency bands, and the changing conditions of
the flyover combine to give results that are less reliable. At frequen-
cies above 5000 hertz, the acoustic signal received at the measuring
station quite possibly is below the noise floor of the recording equip-
ment.

The frequency spectrum at flyover conditions is shown in figure 7
for acoustic angles in the region of peak flyover noise. The segment
of the spectrum between frequencies of 200 and 1250 hertz is consid-
ered to be due to airframe noise : It ,is broadband with a. peak value
of 73 dB occurring at a frequency of about 570 hertz.

The mid-to-high frequency portion of the spectra shown in figure 7
is due to discrete tones from the engines. These tones along with the
other non-airframe noise sources will be discussed later,

Comparison with Predictions

An empirical method was developed in reference 2 for predicting
airframe noise. It was based on tests of five aircraft designed for low
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subsonic speeds. The aircraft were a Prue-2 sailplane, Cessna 150,

Aero Commander, Douglas DC-3, and a Convair 240, covering a gross

weight range from 590 to 17 700 kilograms (1300 to 39 000 lb). Air-

speed varied from 30 to 99 meters per second (58 to 192 knots). The

resulting empirical relationship for overall sound pressure level uf

an aerodynamically "clean" configuration was:

OASPL = 10 LOG10 292 x -X x - + 8.4, dB

h2  cL

Since gross weight, W, is essentially equal to lift which is proportional

to the second power of velocity, the OASPL is proportional to the sixth

power of velocity. The measured spectrum was broadband and peaked

at a frequency given by:

f = 1. 097 x -- , Hz
tm

(Dimensions as given in SYMBOLS.) Since airfoil thickness, tm, was

found to be the relevant length factor in the Strouhal number and be-

cause of the dipole nature of the noise (i. e. , V6), it was concluded

that the predominant noise source was wing trailing edge vortex shed-

ding.

How successful these relationships are in predicting the airframe

noise of an F-106B delta wing aircraft designed for supersonic speeds

is shown in figure 8. The segment of the airframe spectrum (see

fig. 7) has been extrapolated and OASPL and PNL values calculated.

These values along with the predicted OASPL value are shown in the

table. Also shown in the table is the frequency where the spectrum

peaked along with the predicted value.
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The empirical relationship successfully predicted the frequency at

which the broadband spectrum peaked. This suggests that the predominant

noise source from the F-106B airframe was due to wing trailing edge vor-

tex shedding. The empirical relationship was not successful in predicting

the level of the sound. The predicted OASPL value of 105 dB was consider-

ably higher than the measured value of 83 dB. This suggests that a delta

wing may result in relatively weak vortex shedding noise. or that airframe

noise might not vary with the sixth power of aircraft velocity. Also the

aircraft from which the empirical equation was obtained were not as aero-

dynamically clean as the F-106B aircraft.

Another estimate of airframe noise is given in reference 3. Flight

tests of 727 and 747 aircraft identified airframe noise levels for these

aircraft approximately 8 E PNdB below current FAR 36 standards. The

results were then extrapolated to cover a range of gross weights from

about 13 700 to 410 000 kilograms (30 000 to 900 000 lb). The tests

also showed that E PNdB varied as about the fourth power of aircraft

velocity,.

The tests were done for approach conditions, that is for a Mach

number of 0. 23 at an altitude of 113 meters (370'ft). For these condi-

tions, and for an aircraft with the same gross weight as that of the

F-106B aircraft (17 000 kg), the airframe noise level was estimated

to be about 93 E PNdB from reference 3.

To compare with the F-106B results, the 93 E PNdB estimated

noise level was converted from E PNdB to PNdB and then adjusted to

the flyover conditions of the F-106B aircraft (i. e., a Mach number

of 0. 4 at an altitude of 91 m). An increase of 3 PNdB was applied to

convert from E PNdB to PNdB (ref. 12). Another 10 PNdB was added

to account for the increase in aircraft speed from 0. 23 to 0. 04 Mach

number (noise was assumed to increase with the fourth power of air-

craft speed). Finally, 2 PNdB was added to account for the reduction

in altitude from 113 to 91 meters. This resulted in a predicted air-
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frame noise level of 108 PNdB. The measured airframe noise level

is considerably lower at a value of 94 PNdB (fig. 8).

Thus, preliminary results indicate that the amount of noise gener-

ated by the airframe of an F-106B aircraft as it moves through the air

is considerably below predicted values. Although the reasons are not

yet known, there are several significant differences between the present

tests and those of references 2 and 3. One difference is the wing plan-

form of the aircraft; the F-106B aircraft has a low aspect ratio delta

wing whereas the other aircraft have relatively high aspect ratio tap-

ered or swept back wings. A second difference is the lift coefficient

at low subsonic speeds; the F-106B aircraft has a relatively low lift

coefficient compared to the other aircraft. A third difference is the

flight speed at which the tests were conducted; the F-106B aircraft

was flown at a considerably higher speed than the other aircraft. A

fourth difference is the flight path; the F-106B aircraft was flown at

a constant altitude whereas at least some of the other aircraft were

flown along a glide path simulating approach conditions.

Non-Airframe Noise

As mentioned, identifying airframe noise requires determining

the non-airframe noise sources. One of these sources is discrete

tones due to the rotational speed of the engines. These tones occur

at frequencies corresponding to blade passing frequencies of the tur-

bine as well as the first few stages of the compressor. The funda-

mental frequency, which is determined by the product of the number

of rotor blades in a stage and its rotational speed, is shown in

table I.

These tones are responsible for the noise in the mid-to-high fre-

quency portion of the flyover spectra shown in figure 7. The J8 5

engine contributed tones in the mid frequencies; compressor tones
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occurred at frequencies of about 1800, 3500, and 5100 hertz and tur-

bine tones occurred at frequencies of about 3200 and 4400 hertz. The

J75 engine contributed tones in both the mid and high frequencies; com-

pressor tones occurred at frequencies of about 2500 and 2800 hertz and <

turbine tones occurred at frequencies of about 7200, 8700, and 9400

hertz.

The other non-airframe noise source is broadband noise emerging

from the exhaust nozzle. For the J75 engine, which operates at idle

power, broadband noise consists of combustion, turbomachinery, and

jet mixing noise. The noise was identified from tests conducted at

static conditions. The spectrum is shown in figure 9(a) for the acoustic

angles that resulted in peak flyover noise. Broadband noise reached a

peak value of 65 dB at a frequency of about 125 hertz. The spikes at

frequencies above 1 kHz were probably caused by the rotating machinery.

Noise from the J75 engine at idle power does not significantly influ-

ence airframe noise. This is shown in figure 9(b) where the noise level

of the J75 engine is at least 10 dB below airframe noise except at the

low frequencies (about 200 Hz).

Broadband noise also emerges from the exhaust nozzle of the J85

engine. It is also low enough so as not to influence airframe noise.

Since the J8 5 engine is shut off and windmilling rather than operating

at idle power as is the J75 engine, the noise consists of turbomachinery

noise and jet mixing noise but no combustion noise. Because the ex-

haust jet is not heated, jet velocity and, consequently, jet mixing noise

will be lower than that from the J75 engine. Thus, the broadband

noise from the J85 engine will be lower than that from the J75 engine

which is itself insignificant in the frequency range of interest.
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Directivity and Spectra

The results of the flyover tests conducted at an altitude of 91 meters

(300 ft) are shown in figure 10 in terms of the variation in overall sound

pressure level (fig. 10(a)) and perceived noise level (fig. 10(b)) as a

function of acoustic angle. Also shown are the results of the static tests

(J75 engine at idle power and J85 engines off) adjusted to the 91-meter

(300-ft) sideline conditions of the flyover.

The flyover noise level reached a peak value of 87 dB (98 PNdB) at

an acoustic angle of about 1100. The peak noise level is fairly flat

changing less than 1 dB between acoustic angles of 1300 and 900. This

is in agreement with reference 2 in which the peak noise level was ob-

tained at 900

The static noise level was fairly flat at a value of 75 dB (87 PNdB)

between acoustic angles of 1000 and 800. This level is at least 10 dB be-

low the corresponding flyover level indicating again that the J75 engine

at idle power does not significantly influence the flyover noise level.

The static noise level then increased and reached a peak value of 78 dB

(89 PNdB) at an acoustic angle of 600. At lower acoustic angles, the

static and flyover curves are parallel. The level of the static curve is

only 5 dB below the corresponding flyover curve indicating that now the

J75 engine makes a significant contribution to the flyover noise.

The sound pressure level values just discussed were determined

from frequency spectra. These spectra are presented in figure 11 for

acoustic angles between 1200 and 300 in increments of 100. At angles

between 1000 and 300, both flyover and static spectra are given; at

angles of 1200 and 1100, the flyover spectra is shown.
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SUMMARY OF RESULTS

The airframe noise level of an F-106B aircraft was determined

and was compared with that predicted from an existing empirical rela-

tionship. The data were obtained from flyover and static tests con-

ducted to determine the background noise level of the F-106B aircraft,

which is a delta wing aircraft designed for supersonic speeds. The

flyover tests were conducted at an altitude of 91 meters (300 ft) and a

Mach number of 0. 4. The main engine was at idle power and the land-

int gear was retracted. Preliminary results of the investigation can

be summarized as follows:

1. The spectrum associated with airframe noise is broadband and

peaks at a frequency of about 570 hertz.

2. An existing empirical method successfully predicted the fre-

quency at which the spectrum peaked. However, the predicted OASPL

values of 105 dB was considerably greater than the measured value of

83 dB.

3. The noise during flyover peaked at an angle of about 1100 from

the jet axis. The peak was fairly flat between angles of 1200 and 900

This is in good agreement with reference 2 in which the peak noise

level was obtained at 900
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Figure 1. - Modified F-106B aircraft in flight.
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(All dimensions in m (in.) unless indicated otherwise.)
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Figure 5. - Microphone orientation and geometry for flyover tests.
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